sábado, 26 de novembro de 2011

A Matemática e o ENEM - Parte II

Matriz de Referência de Matemática e suas Tecnologias


Competência de área 1 - Construir significados para os números naturais, inteiros, racionais e reais.
H1 - Reconhecer, no contexto social, diferentes significados e representações dos números e operações - naturais, inteiros, racionais ou reais.
H2 - Identificar padrões numéricos ou princípios de contagem.
H3 - Resolver situação-problema envolvendo conhecimentos numéricos.
H4 - Avaliar a razoabilidade de um resultado numérico na construção de argumentos sobre afirmações quantitativas.
H5 - Avaliar propostas de intervenção na realidade utilizando conhecimentos numéricos.

Competência de área 2 - Utilizar o conhecimento geométrico para realizar a leitura e a representação da realidade e agir sobre ela.
H6 - Interpretar a localização e a movimentação de pessoas/objetos no espaço tridimensional e sua representação no espaço bidimensional.
H7 - Identificar características de figuras planas ou espaciais.
H8 - Resolver situação-problema que envolva conhecimentos geométricos de espaço e forma.
H9 - Utilizar conhecimentos geométricos de espaço e forma na seleção de argumentos propostos como solução de problemas do cotidiano.

Competência de área 3 - Construir noções de grandezas e medidas para a compreensão da realidade e a solução de problemas do cotidiano.
H10 - Identificar relações entre grandezas e unidades de medida.
H11 - Utilizar a noção de escalas na leitura de representação de situação do cotidiano.
H12 - Resolver situação-problema que envolva medidas de grandezas.
H13 - Avaliar o resultado de uma medição na construção de um argumento consistente.
H14 - Avaliar proposta de intervenção na realidade utilizando conhecimentos geométricos relacionados a grandezas e medidas.

Competência de área 4 - Construir noções de variação de grandezas para a compreensão da realidade e a solução de problemas do cotidiano.
H15 - Identificar a relação de dependência entre grandezas.
H16 - Resolver situação-problema envolvendo a variação de grandezas, direta ou inversamente proporcionais.
H17 - Analisar informações envolvendo a variação de grandezas como recurso para a construção de argumentação.
H18 - Avaliar propostas de intervenção na realidade envolvendo variação de grandezas.

Competência de área 5 - Modelar e resolver problemas que envolvem variáveis socioeconômicas ou técnico-científicas, usando representações algébricas.
H19 - Identificar representações algébricas que expressem a relação entre grandezas.
H20 - Interpretar gráfico cartesiano que represente relações entre grandezas.
H21 - Resolver situação-problema cuja modelagem envolva conhecimentos algébricos.
H22 - Utilizar conhecimentos algébricos/geométricos como recurso para a construção de argumentação.
H23 - Avaliar propostas de intervenção na realidade utilizando conhecimentos algébricos.

Competência de área 6 - Interpretar informações de natureza científica e social obtidas da leitura de gráficos e tabelas, realizando previsão de tendência, extrapolação, interpolação e interpretação.
H24 - Utilizar informações expressas em gráficos ou tabelas para fazer inferências.
H25 - Resolver problema com dados apresentados em tabelas ou gráficos.
H26 - Analisar informações expressas em gráficos ou tabelas como recurso para a construção de argumentos.

Competência de área 7 - Compreender o caráter aleatório e não-determinístico dos fenômenos naturais e sociais e utilizar instrumentos adequados para medidas, determinação de amostras e cálculos de probabilidade para interpretar informações de variáveis apresentadas em uma distribuição estatística.
H27 - Calcular medidas de tendência central ou de dispersão de um conjunto de dados expressos em uma tabela de freqüências de dados agrupados (não em classes) ou em gráficos.
H28 - Resolver situação-problema que envolva conhecimentos de estatística e probabilidade.
H29 - Utilizar conhecimentos de estatística e probabilidade como recurso para a construção de argumentação.
H30 - Avaliar propostas de intervenção na realidade utilizando conhecimentos de estatística e probabilidade.

sábado, 22 de outubro de 2011

A Matemática e o ENEM - Parte I

Veja o que o exame cobrará na prova de Matemática e suas Tecnologias e saiba o que você precisa estudar
O Exame Nacional do Ensino Médio (Enem) dá para Matemática uma importância muito grande. Depois do conhecimento da língua portuguesa, que é necessário para ler toda a prova, Matemática é o que o Enem mais cobra em seu novo modelo de exame.
Para começar, Matemática e suas Tecnologias é uma prova inteira, com 45 questões, o que representa um quarto da prova objetiva do Enem. Nos vestibulares convencionais, que são conservadores, a matéria costuma ser cobrada em aproximadamente um oitavo da prova.
Além disto, a linguagem Matemática vai aparecer moderadamente na prova de Humanas e deliberadamente na prova de Natureza, na forma de gráficos e tabelas, cálculo de grandezas, regra de três, porcentagem, estatística, probabilidade, entre outras.
Podemos dizer que, desde o ano passado, temas como Meio ambiente, Cidadania e Valorização da Diversidade, que formavam a base da prova, perderam espaço, proporcionalmente, para a Matemática. Estes temas continuam importantes e centrais no Enem, mas nenhum deles vai superar o número de questões de Matemática.
Apesar de o Enem ter como um dos principais objetivos reformar o Ensino Médio, fazendo com que as escolas abandonem a educação conteudista e passem a fazer com que seus alunos compreendam fenômenos, resolvam problemas e elaborem propostas éticas de intervenção na sociedade, o nome desta prova não ajuda na reforma.
Para facilitar que educadores e alunos entendam uma nova forma de educação, mudam-se os nomes que damos às matrizes de conteúdos. No lugar de Biologia, Física e Química, chamamos a área de Natureza. No lugar de História, Geografia, Filosofia e Sociologia, chamamos de Humanas. No lugar de Português, Literatura, Educação Física, Artes e Línguas, chamamos de Linguagens e Códigos.
A ideia de mudar os nomes atende à necessidade de mudarmos os conceitos que temos da educação. Para ficar mais fácil que todos entendam que não é o antigo ensino do conteúdo dos livros didáticos e dos sistemas de ensino que representam Educação, evita-se dar o nome, para as provas do Enem das conhecidas matérias. Tudo perfeito, até resolverem chamar esta prova de matemática.
Quando o professor de matemática vê a prova com este nome, ele acredita que precisa continuar ensinando a mesma coisa em sala de aula. Os demais professores seguem o raciocínio. Se é preciso ensinar matemática, eles também precisam continuar ensinando seus conteúdos.
Se é verdade que Matemática tem questões demais no Enem, se é verdade que o nome da prova não é dos melhores, também é verdade que o que é cobrado está muito mais ligado ao raciocínio lógico e a alguns conteúdos mínimos e fáceis da área. O aluno não será surpreendido com fórmulas e exercícios aterrorizadores, que é a imagem que, em geral, temos da matéria. Os conteúdos mínimos cobrados nesta prova são os mais claros nas matrizes de competências e habilidades do Enem, fazendo dela a mais honesta das quatro provas.
Vamos, então, ver o que o Enem irá cobrar na prova de matemática. As 45 questões estarão divididas em sete competências, que o MEC considera que devem ser desenvolvidas no Ensino Médio.
A Matemática na Vida dos Povos - A primeira coisa que Enem deseja é que o aluno compreenda que os códigos da Matemática, como os números e as operações, são construções humanas, arbitrárias. Em determinado momento, a vida em sociedade exigiu que se contasse, se dividisse, multiplicasse, entre outras coisas. Nas questões desta competência, a única coisa que precisa é contextualizar a linguagem matemática com as questões da vida cotidiana.
As Formas da Vida, Geometria da Realidade - Aqui o Enem irá cobrar conteúdos básicos de geometria. Calculo de área e volume das principais figuras geométricas, conceito de ângulo e teorema de Pitágoras precisam ser estudados. As questões devem estar contextualizadas e o Enem irá verificar se o aluno consegue utilizar seus conhecimentos de geometria para intervir em sua realidade. Metro cúbico costuma ser o conteúdo cobrado em que os alunos mais erram as respostas.
Medidas da Realidade - Nesta competência aparece o Sistema Internacional de Medidas. Será cobrado que o educando consiga identificar, interpretar e utilizar as unidades de medida mais conhecidas, como o metro, quilograma, hora, graus Celsius e Kelvin e o conceito de ampère. Será preciso interpretar e comparar escalas que envolvam estas e outras medidas.
Variação de Grandeza, Porcentagem e Juros - Será avaliada aqui a capacidade do aluno de identificar diferentes formas de variação de grandeza, seja a proporcional ou a inversamente proporcional. Aparecerá também a regra de três e cálculos que envolvam conhecimento de porcentagem e juros – simples e compostos.
Álgebra - Quando representamos problemas da vida cotidiana em uma equação matemática e não sabemos o valor de algum número, representamos este número por um símbolo, geralmente uma letra. Isto é Álgebra. Nesta competência o aluno deverá conseguir representar, gráfica e algebricamente, fenômenos da matemática. Equações algébricas, gráficos cartesianos, conhecimentos de álgebra e conceitos de geometria são fundamentais para o bom desempenho nas questões dessa competência. As equações não devem aparecer diretamente. O Enem irá apresentar alguma situação problema em que o candidato precisará utilizar os conceitos citados para apresentar a resposta.
Gráficos e Tabelas - Essa competência cobra que o examinado interprete informações científicas e sociais a partir da leitura de gráficos e tabelas. É necessário aqui que se consiga “ler” gráficos e tabelas, afinal o Enem os considera como uma das principais formas de linguagem matemática. O que pode aparecer, e vai além da simples interpretação, é a necessidade de previsão de tendência, extrapolação e interpolação dos dados contidos em gráficos e tabelas.
Estatística - Nesta competência serão cobradas noções de estatística básica e probabilidade, apresentadas em questões contextualizadas, no formato de pesquisas, estudos e jogos comuns à vida cotidiana.

Vamos começar? É hora de estudar! É hora de "dar o gás"!

quarta-feira, 7 de setembro de 2011

Exercícios sobre Equações

Há muitos pedidos de alunos para que eu trouxesse alguns exercícios sobre Equações.
Com a ajuda do site EducadorMatemático, consegui levantar algumas atividades.
Clique AQUI.

sábado, 13 de agosto de 2011

PARA QUÊ ESTUDAR GEOMETRIA


 Texto de Antônio José Crespo Moreira

Vê lá que atrapalhação
Disparate e confusão
Este mundo não seria
Se um dia de repente,
Por loucura toda gente
Esquecesse a GEOMETRIA
O carpinteiro João
Não podia pôr no chão
Uma mesa que servisse.
E a janela coitada,
Jamais era consertada
Se um vidro se partisse
Queria a gente uma jaqueta
Não importa azul ou preta
Mas nem curta nem comprida.
Sem GEOMETRIA, apostas?
Vinha com mangas nas costas
Nunca ficava à medida!
O operário na construção
Do telhado ao rés-do-chão
Que fazer já não sabia.
A porta já não fechava;
A parede desabava;
A escada não existia.
Andaria tudo torto
E até mesmo no desporto
Haveria muito azar. 
No futebol, que cachola,
Não se conhecia a bola
Que se havia de chutar!
E para haver harmonia
É preciso GEOMETRIA,
Usá-la a todo o momento.
Para a podermos estudar
Iremos utilizar
Olhos, mãos e pensamento.
A GEOMETRIA é uma ciência
Quer amor e paciência
Passa de avôs para netos.
Suas principais funções:
Estudar formas e dimensões
De todos os objetos.
Mas no mundo há formas tantas
Nos cristais e nas plantas
Nas pessoas, nos tostões!
E nenhuma é perfeita
Pois se a gente à lupa espreita
Vê que há sempre imperfeições!
Formas simples e perfeitas
Que em GEOMETRIA aproveitas
Só na ideia são vividas.
Não são coisas reais
Mas figuras ideais
Com que as coisas são parecidas