sábado, 3 de dezembro de 2011
sábado, 26 de novembro de 2011
A Matemática e o ENEM - Parte II
Matriz de Referência de Matemática e suas Tecnologias
Competência de área 1 - Construir significados para os números naturais, inteiros, racionais e reais.
H1 - Reconhecer, no contexto social, diferentes significados e representações dos números e operações - naturais, inteiros, racionais ou reais.
H2 - Identificar padrões numéricos ou princípios de contagem.
H3 - Resolver situação-problema envolvendo conhecimentos numéricos.
H4 - Avaliar a razoabilidade de um resultado numérico na construção de argumentos sobre afirmações quantitativas.
H5 - Avaliar propostas de intervenção na realidade utilizando conhecimentos numéricos.
Competência de área 2 - Utilizar o conhecimento geométrico para realizar a leitura e a representação da realidade e agir sobre ela.
H6 - Interpretar a localização e a movimentação de pessoas/objetos no espaço tridimensional e sua representação no espaço bidimensional.
H7 - Identificar características de figuras planas ou espaciais.
H8 - Resolver situação-problema que envolva conhecimentos geométricos de espaço e forma.
H9 - Utilizar conhecimentos geométricos de espaço e forma na seleção de argumentos propostos como solução de problemas do cotidiano.
Competência de área 3 - Construir noções de grandezas e medidas para a compreensão da realidade e a solução de problemas do cotidiano.
H10 - Identificar relações entre grandezas e unidades de medida.
H11 - Utilizar a noção de escalas na leitura de representação de situação do cotidiano.
H12 - Resolver situação-problema que envolva medidas de grandezas.
H13 - Avaliar o resultado de uma medição na construção de um argumento consistente.
H14 - Avaliar proposta de intervenção na realidade utilizando conhecimentos geométricos relacionados a grandezas e medidas.
Competência de área 4 - Construir noções de variação de grandezas para a compreensão da realidade e a solução de problemas do cotidiano.
H15 - Identificar a relação de dependência entre grandezas.
H16 - Resolver situação-problema envolvendo a variação de grandezas, direta ou inversamente proporcionais.
H17 - Analisar informações envolvendo a variação de grandezas como recurso para a construção de argumentação.
H18 - Avaliar propostas de intervenção na realidade envolvendo variação de grandezas.
Competência de área 5 - Modelar e resolver problemas que envolvem variáveis socioeconômicas ou técnico-científicas, usando representações algébricas.
H19 - Identificar representações algébricas que expressem a relação entre grandezas.
H20 - Interpretar gráfico cartesiano que represente relações entre grandezas.
H21 - Resolver situação-problema cuja modelagem envolva conhecimentos algébricos.
H22 - Utilizar conhecimentos algébricos/geométricos como recurso para a construção de argumentação.
H23 - Avaliar propostas de intervenção na realidade utilizando conhecimentos algébricos.
Competência de área 6 - Interpretar informações de natureza científica e social obtidas da leitura de gráficos e tabelas, realizando previsão de tendência, extrapolação, interpolação e interpretação.
H24 - Utilizar informações expressas em gráficos ou tabelas para fazer inferências.
H25 - Resolver problema com dados apresentados em tabelas ou gráficos.
H26 - Analisar informações expressas em gráficos ou tabelas como recurso para a construção de argumentos.
Competência de área 7 - Compreender o caráter aleatório e não-determinístico dos fenômenos naturais e sociais e utilizar instrumentos adequados para medidas, determinação de amostras e cálculos de probabilidade para interpretar informações de variáveis apresentadas em uma distribuição estatística.
H27 - Calcular medidas de tendência central ou de dispersão de um conjunto de dados expressos em uma tabela de freqüências de dados agrupados (não em classes) ou em gráficos.
H28 - Resolver situação-problema que envolva conhecimentos de estatística e probabilidade.
H29 - Utilizar conhecimentos de estatística e probabilidade como recurso para a construção de argumentação.
H30 - Avaliar propostas de intervenção na realidade utilizando conhecimentos de estatística e probabilidade.
sábado, 22 de outubro de 2011
A Matemática e o ENEM - Parte I
Veja o que o exame cobrará na prova de Matemática e suas Tecnologias e saiba o que você precisa estudar
O Exame Nacional do Ensino Médio (Enem) dá para Matemática uma importância muito grande. Depois do conhecimento da língua portuguesa, que é necessário para ler toda a prova, Matemática é o que o Enem mais cobra em seu novo modelo de exame.
Para começar, Matemática e suas Tecnologias é uma prova inteira, com 45 questões, o que representa um quarto da prova objetiva do Enem. Nos vestibulares convencionais, que são conservadores, a matéria costuma ser cobrada em aproximadamente um oitavo da prova.
Além disto, a linguagem Matemática vai aparecer moderadamente na prova de Humanas e deliberadamente na prova de Natureza, na forma de gráficos e tabelas, cálculo de grandezas, regra de três, porcentagem, estatística, probabilidade, entre outras.
Podemos dizer que, desde o ano passado, temas como Meio ambiente, Cidadania e Valorização da Diversidade, que formavam a base da prova, perderam espaço, proporcionalmente, para a Matemática. Estes temas continuam importantes e centrais no Enem, mas nenhum deles vai superar o número de questões de Matemática.
Apesar de o Enem ter como um dos principais objetivos reformar o Ensino Médio, fazendo com que as escolas abandonem a educação conteudista e passem a fazer com que seus alunos compreendam fenômenos, resolvam problemas e elaborem propostas éticas de intervenção na sociedade, o nome desta prova não ajuda na reforma.
Para facilitar que educadores e alunos entendam uma nova forma de educação, mudam-se os nomes que damos às matrizes de conteúdos. No lugar de Biologia, Física e Química, chamamos a área de Natureza. No lugar de História, Geografia, Filosofia e Sociologia, chamamos de Humanas. No lugar de Português, Literatura, Educação Física, Artes e Línguas, chamamos de Linguagens e Códigos.
A ideia de mudar os nomes atende à necessidade de mudarmos os conceitos que temos da educação. Para ficar mais fácil que todos entendam que não é o antigo ensino do conteúdo dos livros didáticos e dos sistemas de ensino que representam Educação, evita-se dar o nome, para as provas do Enem das conhecidas matérias. Tudo perfeito, até resolverem chamar esta prova de matemática.
Quando o professor de matemática vê a prova com este nome, ele acredita que precisa continuar ensinando a mesma coisa em sala de aula. Os demais professores seguem o raciocínio. Se é preciso ensinar matemática, eles também precisam continuar ensinando seus conteúdos.
Se é verdade que Matemática tem questões demais no Enem, se é verdade que o nome da prova não é dos melhores, também é verdade que o que é cobrado está muito mais ligado ao raciocínio lógico e a alguns conteúdos mínimos e fáceis da área. O aluno não será surpreendido com fórmulas e exercícios aterrorizadores, que é a imagem que, em geral, temos da matéria. Os conteúdos mínimos cobrados nesta prova são os mais claros nas matrizes de competências e habilidades do Enem, fazendo dela a mais honesta das quatro provas.
Vamos, então, ver o que o Enem irá cobrar na prova de matemática. As 45 questões estarão divididas em sete competências, que o MEC considera que devem ser desenvolvidas no Ensino Médio.
A Matemática na Vida dos Povos - A primeira coisa que Enem deseja é que o aluno compreenda que os códigos da Matemática, como os números e as operações, são construções humanas, arbitrárias. Em determinado momento, a vida em sociedade exigiu que se contasse, se dividisse, multiplicasse, entre outras coisas. Nas questões desta competência, a única coisa que precisa é contextualizar a linguagem matemática com as questões da vida cotidiana.
As Formas da Vida, Geometria da Realidade - Aqui o Enem irá cobrar conteúdos básicos de geometria. Calculo de área e volume das principais figuras geométricas, conceito de ângulo e teorema de Pitágoras precisam ser estudados. As questões devem estar contextualizadas e o Enem irá verificar se o aluno consegue utilizar seus conhecimentos de geometria para intervir em sua realidade. Metro cúbico costuma ser o conteúdo cobrado em que os alunos mais erram as respostas.
Medidas da Realidade - Nesta competência aparece o Sistema Internacional de Medidas. Será cobrado que o educando consiga identificar, interpretar e utilizar as unidades de medida mais conhecidas, como o metro, quilograma, hora, graus Celsius e Kelvin e o conceito de ampère. Será preciso interpretar e comparar escalas que envolvam estas e outras medidas.
Variação de Grandeza, Porcentagem e Juros - Será avaliada aqui a capacidade do aluno de identificar diferentes formas de variação de grandeza, seja a proporcional ou a inversamente proporcional. Aparecerá também a regra de três e cálculos que envolvam conhecimento de porcentagem e juros – simples e compostos.
Álgebra - Quando representamos problemas da vida cotidiana em uma equação matemática e não sabemos o valor de algum número, representamos este número por um símbolo, geralmente uma letra. Isto é Álgebra. Nesta competência o aluno deverá conseguir representar, gráfica e algebricamente, fenômenos da matemática. Equações algébricas, gráficos cartesianos, conhecimentos de álgebra e conceitos de geometria são fundamentais para o bom desempenho nas questões dessa competência. As equações não devem aparecer diretamente. O Enem irá apresentar alguma situação problema em que o candidato precisará utilizar os conceitos citados para apresentar a resposta.
Gráficos e Tabelas - Essa competência cobra que o examinado interprete informações científicas e sociais a partir da leitura de gráficos e tabelas. É necessário aqui que se consiga “ler” gráficos e tabelas, afinal o Enem os considera como uma das principais formas de linguagem matemática. O que pode aparecer, e vai além da simples interpretação, é a necessidade de previsão de tendência, extrapolação e interpolação dos dados contidos em gráficos e tabelas.
Estatística - Nesta competência serão cobradas noções de estatística básica e probabilidade, apresentadas em questões contextualizadas, no formato de pesquisas, estudos e jogos comuns à vida cotidiana.
Vamos começar? É hora de estudar! É hora de "dar o gás"!
quarta-feira, 7 de setembro de 2011
Exercícios sobre Equações
Há muitos pedidos de alunos para que eu trouxesse alguns exercícios sobre Equações.
Com a ajuda do site EducadorMatemático, consegui levantar algumas atividades.
Com a ajuda do site EducadorMatemático, consegui levantar algumas atividades.
Clique AQUI.
quarta-feira, 31 de agosto de 2011
sábado, 13 de agosto de 2011
PARA QUÊ ESTUDAR GEOMETRIA
Texto de Antônio José Crespo Moreira
Vê lá que atrapalhação
Disparate e confusão
Este mundo não seria
Se um dia de repente,
Por loucura toda gente
Esquecesse a GEOMETRIA
O carpinteiro João
Não podia pôr no chão
Uma mesa que servisse.
E a janela coitada,
Jamais era consertada
Se um vidro se partisse
Queria a gente uma jaqueta
Não importa azul ou preta
Mas nem curta nem comprida.
Sem GEOMETRIA, apostas?
Vinha com mangas nas costas
Nunca ficava à medida!
O operário na construção
Do telhado ao rés-do-chão
Que fazer já não sabia.
A porta já não fechava;
A parede desabava;
A escada não existia.
Andaria tudo torto
E até mesmo no desporto
Haveria muito azar.
No futebol, que cachola,
Não se conhecia a bola
Que se havia de chutar!
E para haver harmonia
É preciso GEOMETRIA,
Usá-la a todo o momento.
Para a podermos estudar
Iremos utilizar
Olhos, mãos e pensamento.
A GEOMETRIA é uma ciência
Quer amor e paciência
Passa de avôs para netos.
Suas principais funções:
Estudar formas e dimensões
De todos os objetos.
Mas no mundo há formas tantas
Nos cristais e nas plantas
Nas pessoas, nos tostões!
E nenhuma é perfeita
Pois se a gente à lupa espreita
Vê que há sempre imperfeições!
Formas simples e perfeitas
Que em GEOMETRIA aproveitas
Só na ideia são vividas.
Não são coisas reais
Mas figuras ideais
Com que as coisas são parecidas
Assinar:
Postagens (Atom)